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The notion of a manual, introduced and investigated in detail by Foulis, Randall, 
and their followers, has turned out to be further reaching than its originators had 
envisaged. Its omnipresence is comparable with the notion of a sheaf, whose 
significance is well recognized by every pure and applied mathematician. The 
principal concern of this paper is to give an appropriate vehicle, as general as 
possible, by which the theory of manuals can be developed. The vehicle is called 
an orthogonal category, which is akin to the notion of a category with coproducts. 
Orthogonal categories provide also a new perspective on the notion of a sheaf 
over a complete Boolean algebra, deepening our comprehension of Boolean 
mathematics and paving the way to quantum mathematics. 

I N T R O D U C T I O N  

The notion of  a manual has been investigated by Foulis and Randall ' s  
school as a vehicle for studying the operational foundations of  empirical 
sciences. Category theory has enabled us to liberalize the notion so as to 
cover  a wider sphere of  mathematics ranging from algebraic geometry to 
functional analysis, for which the reader is referred to Nishimura (1993b, 
1994, n.d.-a,b). The omnipresence of  manuals tempted us to build a unifying 
f ramework for the theory o f  manuals. The resulting structure, which we 
present in this paper to this end, is called an o r t h o g o n a l  ca tegory .  Orthogonal  
categories are very akin to categories with coproducts,  but neither sort o f  
category is subsumed by the other. The motivat ing model  o f  orthogonal  
categories has been the dual category ~ [ o c  o f  the category ~ i [  of  complex  
Hilbert spaces and contractive linear mappings,  in which orthogonal  sums 
are by no means coproducts. 
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212 Nishimura 

The principal concern of this paper is to show that the theory of manuals 
can and should be developed within the framework of orthogonal categories, 
which is the subject of Section 2. Orthogonal categories also bring forth a 
new insight into sheaves over complete Boolean algebras. Since Boolean 
mathematics is concerned with sheaves over a complete Boolean algebra, 
this deepens our understanding of Boolean mathematics, which is the subject 
of Section 3. We will see in a subsequent paper (Nishimura, n.d.-c) that 
Boolean mathematics within the framework of orthogonal categories affords 
a quantum generalization of sheaves. Section 1 is devoted to a review of 
Boolean-valued set theory. 

In this paper a Hilbert space always means a complex Hilbert space. 
Given a complete Boolean algebra B and an element p of B, the subset {q 

B Iq -< p} can naturally be regarded as a complete Boolean algebra, called 
the relative algebra of B with respect to p and denoted by B tp. The set R 
of real numbers is usually regarded as a metric space with respect to the 
metric d(x, y) = I x-y l  (x, y E R). A diagram in a category ,~ is a functor 
from a small category ~ (called the indexing category) to ,q. If the indexing 
category is a cone from a discrete category A, the suggestive notation {Xx rx 

Y}X~A is used for diagrams. 

1. BOOLEAN-VALUED SET THEORY 

Let us quickly review the rudiments of Boolean-valued set theory. Let 
B be a complete Boolean algebra, which shall be fixed throughout this section. 
We define V~ ~ by transfinite induction on ordinal c~ as follows: 

V~ B~ = 0 (1.1) 

V~ ~ = {ulu: ~b(u) --9 B and ~(u)  C (.J V~ m (1.2) 
[3<a 

Then the Boolean-valued universe V (B) of Scott and Solovay is defined 
as follows: 

V (B) = U V~ ~ (1.3) 
o~On 

where On is the class of all ordinal numbers. The class V Cm can be considered 
to be a Boolean-valued model of set theory by defining ~u ~ v~ and ~u = 
v] for u, v ~ V (m with simultaneous induction 

~u ~ v~ = sup (v(y) ^ [[u = y~) (1.4) 
yE~(v) 

~ u = v ~ =  inf (u(x) ~ Ix ~ v]) ^ inf (v(y) --~ ~y E u]) (1.5) 
xE~(u) y ~ ( v )  
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and by assigning a Boolean value ~@] to each formula | without free variables 
inductively as follows: 

~lo~ = l~O~ (1.6) 
v = v ( 1 . 7 )  

A = ^ IF| ( 1 . 8 )  

~VxO(x)~ = inf [[| (1.9) 
u ~ V (B) 

 3xO(x)  = sup (1.10) 
u e V (B) 

Every theorem of standard mathematics, no matter what branch it belongs 
to, can be regarded in principle as a theorem of  the Zermelo-Fraenkel  set 
theory with the axiom of choice, usually abbreviated to ZFC. The following 
theorem gives a powerful transfer principle from standard mathematics to 
Boolean mathematics. 

Theorem 1.1. If | is a theorem of ZFC, then so is 1[| = 1. 

The class Vof  all sets can be embedded into V (B) by transfinite induction 
as follows: 

3~ = {(~, 1)Ix E y} for y e V 

Proposition 1.2. For x, y E V, we have: 

{~ if x E y  
(1) ~ e y~ = otherwise 

{ ;  if x = y  
(2) ~x = 3~] = otherwise 

A (possibly empty) family {Px}n~A of nonzero elements of B is called a 
partialpartition of unity ofB ifpx A Px' = 0 for any k v~ k' .  A partial partition 
of unity {Px } x ~ a of B is called a partition of unity of  B if vx ~ APx = 1. 

As remarked in Nishimura (1993b, p. 1297), every poset and so the 
complete Boolean algebra B in particular can be regarded as a category. The 
objects of the category B are the elements of B. Given a pair (p, q) of objects 
of the category B, it is always the case that there exists at most one arrow 
from p to q, and there is one iff p --< q. We denote by @~t~ the category of 
sets and functions. A presheaf on B is a contravariant functor ~ from the 
category B to the category @rt~, in which, given p, q e B and x e ~(q)  
with p -< q so that there exists a unique arrow fq,p from p to q in the category 
B, we often write ~p,q(X) for ~(fu,p)(X). A presheaf ~ on B is called a sheaf 
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on B if for any partial partition {Px}xEA of unity of B and any family {xx}• 
with xx e ,~(p• for each h e A, there exists a unique x e ~(Vx~Apx) with 
~px,~Ap• = x• for each h E A. Our definition-of a sheaf appears to 
diverge from the standard one, but the following theorem will take us back 
to the conventional one. 

Theorem 1.3. Let ~ be a sheaf on B. For any family {Px}x~A of elements 
Px in B and any family {Xh}ke A with xx e ~(p• for each h e A, if 

~p~^pk,,ph(Xh) = ~ph^pk,,pk,(Xh') for any h, k '  e A 

then there exists a unique x ~ ~(Vh~Aph) with ~pk,vk~Apk(X) "~" X h for each 
X e A .  

Proof. By Zermelo's well-ordering theorem, we can assume that A is 
the set of all the ordinal numbers s less than some ordinal number s 0. Let 
q~ = p .  ^ 7va<.p6 for each ordinal number s < Oto. It is easy to see that 
the family {q~}-<~0 is a partial partition of unity of B and vi~<.q 6 = 
v~<,~p~ for each s < ot 0. Let y~ = ~qct,pa(XoL) for any s < Oto. Then there 
exists a unique y E ~(V~<~0q,) with 

"-~qa, vc~<,~oq,~(Y) = Y~, for any s < s 0 

If  x ~ ~(v~<~opa) is such that 

~p . . . .  <~opo(x) = x~ for any s < So 

then 

~q . . . .  <c~0qa(X) = y~ for any s < s 0 

so that x = y, which has just established the uniqueness part of  the theorem. 
To show the existence part of the theorem, it suffices to see that 

,~p .... <~0p(y) = x~ for each s < s0 

which may be established as follows. Let s ,  [3 be ordinal numbers with 
[3 < s < s0. Then we have 

~ pa^qfl,va<aopJ y ) = ~ pa^qi3,qb ( ~ ql~, va<aOpc ( y ) ) 

= ~paAqfl,qB(yl3 ) 

= O~pa^qfs,qf3(~qf3,pl3(X~) ) 

= ~ ^ ~ , ~ ( x ~ )  

= ~petAql3,paApfl(YpctAefl,pfl(X[5)) 

= .~po^q~,p~^~(.~p.^p~,~o(x~))  

= ~paAqi~,pa(Xa) 
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Since the family {p~ /x q~}~<~ U {q~} is a partial partition of unity of B 
whose supremum is p~, we have 

~p . . . .  <~,oq~,(y) = x~ 

As eL was an arbitrary ordinal number with a < c~ o, the proof is complete. [] 

Given presheaves ~ ,  ~ on B, a morphism ofpresheaves from o ~ to 
is a natural transformation "r from the functor ~ to the functor ~. In particular, 
if ~ and ~ happen to be sheaves on B, a morphism of presheaves from 
to ~ is also called a morphism of sheaves from ~ to ~. 

Given presheaves ~ ,  ~g on B, if  ~ ( p )  is a subset of ~3(p) for each p E 
B and ~p.q is the restriction of  ~3p, q for any p, q e B with p - q, then ~ is 
called a subpresheaf of  ~3. In particular, if ~ and ~3 happen to be sheaves on 
B, then ~ is called a subsheaf of  q3. 

Given presheaves ~ ,  ~3 on B, the presheaf which assigns to each p E 
B ~ (p )  • N(p) and which assigns to each arrow p ~ q the function 

(x, y) e ~(q) X q~(q) ~ ( ~ p ,q ( X ) ,  C~p,q(y)) E ~(p) X q~(p) 

is denoted by ~ XB c& A morphism of presheaves of  ff  Xa q3 can be regarded 
as a morphism of two arguments. The discussion can be generalized easily 
to several arguments. 

Given u e V (~), we are going to build its associated shear ~ on B. Each 
p e B determines an equivalence relation ~p on V (B) as follows: 

v -----p w iff [Iv = w]] -- p (1.11) 

For each v e V (B) we write [v]p for the equivalence class of v with respect 
to the equivalence relation ----p. For each p e B we write V(B)(p, u) for the 
class {v e V(B) I l[v e u] --  p }. We write V(B)[p, u] for the set {[V]p I v 
V(B)(p, u)}. We define a presheaf t~ on B as follows: 

a(p) = V(B)[p, u] for each p e B (1.12) 

ap,q([V]q) = Iv] e for any p , q  e B with p - <  q (1.13) 

It is not difficult to see that this is indeed well defined and besides that tl is 
a sheaf on B. 

Let q0: u ~ v be a function in V (R). We are going to construct its 
associated morphism ff of  sheaves from fi to 9. For each p e B we define 
a function ffp from fi(p) to f (p )  as follows: 

~p([W]p)  ~--- [q~(W)]p for each w e V<B)(p, u) (1.14) 

It is not difficult to see that this is indeed well defined and besides that the 
assignment p E B ~ ffp, denoted by tb, is a morphism of sheaves from t~ to f. 
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Conversely, given a presheaf ~ on B, we are going to build its associated 
element ~ of V ~m. First we define an element ~ of V ~ as follows: 

= {($,p)]p e B andx  ~ ~(p)} (1.15) 

It is not difficult to see that ~ = {((x, y)V, r)lx E ~(p) for s o m e p  e B, 
y e ~(q)  for s o m e q  e B, and r = sup{F e BIr' < - p ^ q  and~r,,p(X) 
= ~ r ' , q ( Y ) }  } is an equivalence relation on ~ in V (m. The quotient set of U~ 
with respect to this equivalence relation in V (m is denoted by ~.  

Given a morphism "r: ~ -4  N of presheaves on B from ~ to N, we are 
going to construct its associated function ~ from ~ to ~ in V (a~. First we 
define a function -~: ~ --~ ~ in V (m as follows: 

,~ = {((x, %(x))~,p)[p ~ B andx  ~ ~(p)} (1.16) 

Since the function ~ respects the equivalence relations - ~  and --~ in V ~m, 
it naturally brings forth a function ~: ~ ~ ~ in V ~m. The construction of 
from ~" can be generalized easily to functions of several arguments. 

We denote by ~rtd ~n) the category whose objects are all elements of 
V ~B~ and whose morphisms are all functions in V ~m. We denote by ShB the 
category whose objects are all sheaves on B and whose morphisms are all 
morphisms of sheaves on B. By tidying up the preceding discussions, it is 
not difficult to see the following result. 

Theorem 1.4. The categories ~ n 6  (m and Sh B are equivalent. 

Since the Scot t -Solovay universe V ~m enjoys ZFC, we can construct the 
set RB of  real numbers in V ~m by any one of the well-known methods, for which 
the reader is referred to Takeuti (1978). We denote by ~ the Stonean space of 
B and by l)p the Stonean space of B I p for eachp E B. Note that ifp -< q in B, then 
12p can naturally be regarded as a topological subspace of f~p. The corresponding 
sheaf of  RB can be represented by the sheaf ~t~ on B, which assigns to each p 

B the set of real-valued Borel functions on Op, where two real-valued Borel 
functions on 12p are identified if they differ only within a meager Borel subset 
of f~p, and which assigns to each pair (p, q) of elements of B with p <-- q the 
mapp ing f  ~ ~tB(q) ~ fl  f~p (the restriction o f f  to f~p). We denote by ~t~ the 
subpresheaf of ~B such that ~t~(p) consists of all essentially bounded, real- 
valued Borel functions on f~p for each p E B, where a function on f ~  is called 
essentially bounded if there exists a positive number r such that If(x) I <- r for 
any x E f~p except some meager Borel subset of f~p. We denote by ~t ~ the 
subpresheaf of ~tB such that gt~ consists of all constant functions on f~p for 
eachp E B. 



M a n u a l s  i n  O r t h o g o n a l  C a t e g o r i e s  217 

2. ORTHOGONAL CATEGORIES 

Let us begin this section with a brief review on a version of manuals 
of Boolean locales. The category of complete Boolean algebras and complete 
Boolean homomorphisms is denoted by 2300[. The dual category of ~oo~ 
is denoted by ~52oc. Its objects are called Boolean locales. If we regard a 
Boolean locale X as an object in ~oo[ ,  it is often denoted by ~'(X) for 
emphasis, though X and 9~(X) denote the same entity. The opposite fop of a 
morphism f: X ---> Y in ~Eor which is a complete Boolean homomorphism 
from ~(Y) to ~P(X), is usually denoted by ~(f). A morphism f of ~52or is 
called an embedding if ~(f) is surjective. Two embeddings f: Y ---> X and 
g: Z ---> X with the same codomain are said to be equivalent if there exists 
an isomorphism h: Y --> Z in ~ s 1 6 2  such that f = g o h. Given a Boolean 
locale X and x e ~'(X), the morphism i ;  XIx --> X is an embedding, where 
~(Xlx)  = ~(X) Ix and ~(ix)(y) = x/x y for each y E ~(X). Any embedding 
into X is equivalent to ix for a unique x e ~(X). A Boolean locale X is 
called trivial if ~(X) is a trivial Boolean algebra, i.e., if ~(X) consists of a 
single element�9 Since the category ~oo][ is complete, the category ~ s  
is cocomplete. 

Let ~J2 be a small subcategory of the category ~ s  A diagram of 
~ s  is said to be in ~r~ if all the objects and morphisms occurring in the 
diagram lie in ~)~. Boolean locales X and Y in ~ are said to be ~-orthogonal, 
in notation X Z~j~ Y, if there exists a coproduct diagram X --~ Z ~- Y of 
~ s 1 6 2  lying in ~)~. A Boolean locale X in ~ is said to be ~J/~-maximal if for 
any Boolean locale Y in ~J)~, X 2 ~  Y implies that Y is trivial�9 Boolean 
locales X and Y in ~ are said to be sJ)?-equivalent, in notation X ---,~e Y, 
provided that for any Boolean locale Z in ~J)~, X l ~  Z i f fY l ~  Z. Obviously 
~J3~-equivalence is an equivalence relation among the Boolean locales in 93L 
We denote by [X]~ the equivalence class of X with respect to ~JA~-equivalence. 
A coproduct diagram {Xx -~ X}~A of 23~20c lying in s)32 is called an ~ -  
coproduct diagram if for any coproduct diagram 

I 

{X~ ~ X'}h~A 

of 23520c lying in ~ ,  the unique morphism g: X ---> X' of 23s with g 0 
fa = f~ for any k e A belongs to s)]~, in which X is called an sJ2s 
of Xa's and is denoted by s G Xx. If A is a finite set, say, A = { 1, 2}, 
then such a notation as XI @~e X2 is preferred. If A is empty, X = Ex~A 
O ~  Xa is no other than a trivial Boolean locale which is an initial object in 
~)~E. In this case X is called an ~-trivial Boolean locale. An embedding f: X 
---> Y in s21d is called an s))~-embedding if there exists an embedding g: Z + 

�9 f g �9 
Y in s532 such that the diagram X ---> Y <:-- Z is an ~-coproduct  diagram. In 
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this case X is called an ~-sublocale of Y. Given an ~-sublocale  Y of a 
Boolean locale X in ~ ,  the s2~-embedding of Y into X is equivalent in ~2or  
to the canonical embedding i,: X Ix ---) X for a unique x E ~(-X), in which 
Y is denoted by X~. 

A manual of Boolean locales is a small subcategory ~ of the category 
~52oc satisfying the following conditions: 

(2.1) 

(2.2) 
(2.3) 
(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

For any pair (X, Y) of Boolean locales in s))2, there exists at most 
a sole morphism from X to Y in ~Y~. 
There exists at least a trivial Boolean locale in ~ .  
Every trivial Boolean locale in s))2 is sJ92-trivial. 
For any Boolean locales X, Y in ~ ,  if there exists a morphism 
from X to Y in ~)~, then Y l ~  Z implies X _l_,~j~ Z for any 
Boolean locale Z in ~ .  
For any Boolean locales X, Y in ~ with X 3_~t Y, there exists 
a Boolean locale Z of the form Z = X O,jj~ Y. 
For any Boolean locale Z with Z = X ~),jj~ Y in s))2, X • W 
and Y _L~ W imply Z •  W for any Boolean locale W. 
For any Boolean locales X and Y in ~32, X ~--~ Y iff there exists 
a Boolean locale Z in ~ such that X • Z, Y • Z, and both 
of X G ~  Z and Y ~3~ Z are ~-maximal .  
For any commutative diagram 

X f )Y 

Z 

of ~ o c ,  if f is in s)~ and h is an sJ)2-embedding, then g is in s)y~. 

Now we reproduce a pristine example of a manual of Boolean locales 
from Nishimura (1993b, Example 3.3), which will play a pivotal role in our 
future transition from Boolean mathematics to quantum mathematics. 

Example 2.1. Let B be a complete Boolean algebra. For each p E B 
we denote by Xp the Boolean locale with @(Xp) = B Ip. The first-class 
Boolean manual ~02B on B is a subcategory of the category 2352oc whose 
objects are all Xp (p ~ B). A morphism f: Xp ---) Xq of Boolean locales with 
p, q E B lies in ~ B  i f fp  -< q and @(f)(x) = x ^ p for any x ~ ~(Xq). It 
is easy to see that the categories B and sJ)2B are naturally isomorphic by the 
assignment p E B ~ Xp. 

The careful reader of Nishimura (1993b) might notice that two important 
conditions imposed on our previous notion of a manual of Boolean locales 
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are lacking in the above list of eight conditions and also that our present 
definition of an ~)2-coproduct diagram is a bit weaker than our previous one. 
They are conditions (3.7) and (3.10) of that paper. The first missing condition 
will be discussed within a more general context, while the remaining one 
that is missing is shown to be retrievable within the same general context. 

So far we have constructed the notion of a manual based on the category 
~2oc.  Our principal concern of this section is to build rudiments of the 
theory of manuals upon a category as general as possible. Obviously it would 
be futile to try to build such a theory upon an arbitrary category, which would 
lead only to general nonsense. Thus our first task is to delineate an appropriate 
class of categories upon which a fertile theory of manuals can be established. 

A pair (~ff, ~,3~) of a category ,~' and a class o~, of diagrams in ,~ is 
called an orthogonal category if it satisfies the following conditions: 

(2.9) The category ,if' has an initial object. 
fx 

(2.10) Every diagram in o~, is of the form [X --~ Y}X~A. 
(2.11) For any small family {X}x~a of objects in ,ff there exist an 

object Y in ,ff and a family {fx}~A of morphisms fx: Xx --~ Y 

in ,~' such that the diagram {X~ ~ Y}X~A lies in O~,. 
(2.12) Given a small family {Xx}x~ of objects in ~,  if diagrams {Xx 

---> Y}X~A and {Xa -~ Z}X~A lie in 0~.~,, then there exists a 
unique morphism h: Y --+ Z in ,~ such that gx = h o fx for 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

each h E A. 

Given diagrams {Yx 

,~', the diagram {X~ 
iff all the diagrams 

f~ 
Z}x~A and {X~ ~ Y x } ~  (h E A) in 

g~or~> ZIX s A and 6 ~r?x} lies in t ~ ,  

{Yx -~ Z}X~A and {X~ --> Yx}~a~ (X E 
A) lie in o,3.~,, where the sets A x are assumed to be mutually dis- 
joint. 

I f a  diagram {X~ ~ YIX ~ A and 6 E Ax} lies in o~, ,  then 
h h ' 

there exist diagrams {X~ ~ Z• (h E A) and {Zx --> Y}X~A 
such that f~ = ha o g~ for any h ~ A and any 6 ~ A x, where 
the sets Ax are assumed to be mutually disjoint. 

If {Xx f)-> Y}x~A is a diagram in ,~ and {Z~ ~ Y}~a is also 
a diagram in ,~ff with Z~ being an initial object of ,~ for each 6 

E A, then the diagram [Xx ---> Y}x~A J.s in 0~.~, lff the diagram 
f ~  g ;b  " " 0 ~ {Xx "-'-> Y}XEA U {Z~ -'-> Y}a~A is m ,~.. 

If f: X --> Y is an isomorphism in ,~, then the diagram {X r _-> 

Y} lies in 0,3.~,. 
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(2.17) Given a diagram {X• ~-~ Y}X~A in o~,,  if fXl and fx2 happen 
to be the same morphism for some distinct kl, k2 E A (so that 
Xxl = Xx2), then Xxl -= X~2 is an initi~tl object of ,~. 

(2.18) If a diagram {X ~ Y} lies m og.~t,, then f is an isomorphism. 
�9 f ~  g ~  " ~ " h (2.19) Given diagrams {X• ---) Y}XEA and {Xa ~ Y}a~z in ~,  If bot 

fx fx 
the diagram {Xx --~ Y}• and the diagram {Xx ---) Y}X~A k.J 
{X~ -~ Y}~A are in o~.~, then X~ is an initial object for each 
8 ~ A .  

Unless confusion may arise, the category ~ itself is called an orthogonal 
category by abuse of language�9 A diagram {X• ~ Y}X~A in 06.~t, is called 
an orthogonal sum diagram, in which Y is called an orthogonal sum of Xx's. 
Thus the class o ~  is the class of orthogonal sum diagrams in ,~. A morphism 
f: X ~ Y is called an embedding if there exists a morphism g: Z ~ Y in 
,R such that the diagram X ~ Y ~- Z lies in o~,.  Two embeddings f: Y ---) 
X and g: Z ~ X with the same codomain are said to be equivalent if there 
exists an isomorphism h: Y ~ Z in ,~t' such that f = g o h. An object in ,~t 
is called trivial if it is an initial object of ~ .  A trivial object of ~t can be 
regarded as the orthogonal sum of the empty family of objects in ,~. 

With such an abstract concept as that of an orthogonal category ,~' just 
introduced, we feel obliged to present some examples. 

Example 2�9 Let ,~ be a category with (possibly infinite) coproducts. 
Let cp.~ be the class of all coproduct diagrams in ,~. It often happens that 
the pair (,~, o~,)  is an orthogonal category. By way of example, the category 
23~oc is cocomplete, and the pair (~2oc,  cP,z~.o~.) is an orthogonal category�9 
The category @n6 is complete and cocomplete, and the pairs (@a~, clg~n~) 
and (~52oc, cl~0~) are orthogonal categories, where ~9.oc denotes the 
opposite category of ~ng,  whose objects are called set locales�9 The category 
92[ b(S3p of Abelian groups and group homomorphisms is complete and cocom- 
plete, and the pairs (2119639, cP,~t~.~) and (~lb~oc, r  are orthogonal 
categories, where 21b~2oc denotes the opposite category of 2119(~p, whose 
objects are called Abelian locales. 

We give a special case of Example 2.2, which will be of interest later. 

Example 2.3. We denote by 19~21[ the category of yon Neumann algebras 
and normal homomorphisms, where a homomorphism of yon Neumann alge- 
bras means a homomorphism of rings which is *-preserving (i.e., a *-homo- 
morphism) and unitary (i.e., mapping the identity operator of the first yon 
Neurnann algebra to that of the second yon Neumann algebra). The category 
t~9,1~ is complete. In particular, if {.J/tx}x~ A is a family of yon Neumann 
algebras ~• acting on Hilbert spaces ~x, then its products are isomorphic 
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to the direct sum s ~ a  acting on the orthogonal sum Ek~A @~k [cf. 
p. 336 of Kadison and Ringrose (1983/1986) or w of Dixmier (1981)]. 
The dual category t~,Eoc of t ) ~ i  is cocomplete, and the pair (t~)~Eoc, 
cl)o,)~o~.) is an orthogonal category, where the objects of 1)~52oc are called 
yon Neumann locales. 

The following example shows that even if a category ,~ff is cocomplete, 
the coproduct diagrams are not necessarily adequate to be the orthogonal dia- 
grams. 

Example 2.4. A complete Boolean algebra B is a poset, and can naturally 
be regarded as a category. It is cocomplete, but the pair (B, CPB) is by no 
means an orthogonal category. The class o~B of orthogonal diagrams in B 
should be taken to be the class of diagrams {Px ~ Va~APx}x~A in which the 
px's are mutually disjoint. Throughout the remaining part of the paper the 
category B will be regarded as an orthogonal category in this sense. 

Now we give an important example, which is not a special case of 
Example 2.2. 

Example 2.5. We denote by gbil the category of Hilbert spaces and 
contractive linear transformations. That is to say, a linear transformation T: 

~ ~{ of Hilbert spaces is a morphism in ~i f  iff IIT!x)ll - Ilxll for any x 
h 

~.  We take as o~,()it the class of all diagrams {~• --+ 7s m �9 such 
that U• is an isometry of ~• into ~{ for each X ~ A, the images Ux(~x) of 
U• are mutually orthogonal in ~s and ~{ = E• OUx(~x). It is easy to see 
that (~iL o~,~-~it) is an orthogonal category. 

Example 2.5 has its dual counterpart, which has been the motivating 
example of our new notion of an orthogonal category. 

Example 2.6. We denote by g)Eoc the dual category of S~if. Its objects 
are called Hilbert locales. If a Hilbert locale X is regarded as an object of 
g)if, it is denoted by ~(X) for emphasis, though X and 7s represent the 
same entity. If f is a morphism in g)52or then its dual fop is denoted by ~(f). 

fx 
We denote by od,r the class of diagrams {Xx ~ Y}X~A in ~520C such that 
~(fa) is a partial isometry of ~(Y) onto ~(Xx) for each k ~ A, the initial 
spaces 3~(~(fx)) of ~(fx) are mutually orthogonal in ~(Y), and ~(Y) = 
E~A | 

Now we present some elementary propositions. 
�9 . . f~. . . 

Proposmon 2.7. If a dmgram {X• --) Y}~A hes m o~ ,  and a morphism 
g: Y ~ Z is an isomorphism in ,~, then th{} diagram {X~ g-~x Z}X~A also 
lies in 0~,. 
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Proof. Since the morphism g: Y ~ Z is an isomorphism, the diagram 
�9 f k  , . 

{Y -~ Z} lies in od~, by (2.16)�9 As the diagram {X• --e Y} hes m o ~ ,  the 
desired result follows from (2.1 3). �9 

Proposition 2.8. If a diagram {Xx -~ Y}X~A lies in 0~, and gx: Zx --~ 

Xx is an isomorphism for each h E A, then the diagram {Zx fxog~ Y}• 
also lies in Oe_,s~,. 

Proof. As in our previous proposition, this follows also from (2.13) 
and (2.16). �9 

Let ~s be a small subcategory of an orthogonal category ,~. A diagram 
in ~r is said to be in ~ if all the objects and morphisms occurring in the 
diagram lie in s))2. Objects X and Y of s)32 are said to be ~-orthogonal, in 

�9 f g 

notation X ,l,~ Y, if there exists an orthogonal sum diagram X ~ Z ~- Y 
of ,~ lying in ~)~. An object of ~ is said to be sJ)~-trivial if it is a trivial 
object of ,~' and also an initial object of  ~ .  An object X of ~ is said to be 
~-maximal if for any object Y of s232, X _l_~je Y implies that Y is ~)~-trivial. 
Objects X and Y of ~ are said to be 92~-equivalent, in notation X =,~j~ u 
provided that for any objects Z of  ~ ,  X ,l,~)~ Z iff Y _1_~ Z. Obviously, ~ -  
equivalence is an equivalence relation among the objects of ~332. We denote 
by [X],~j~ the equivalence class of  an object X of s)32 with respect to s)A2- 

tx 
equivalence. An orthogonal sum diagram {Xx ~ X}X~A of ,~ lying in s392 is 
said to, be an orthogonal s))~-sum diagram if for any orthogonal sum diagram 

{X• -~ X'}a~A of,~ff lying in ~)32 the unique morphism g: X --~ X' of,~' with 
g o fx = f;, for any h ~ A belongs to s))2, in which X is called an orthogonal 
sJYUsum of Xx's and is denoted by EX~A O~tXx. If A is a finite set, say A = 
{ 1, 2}, then such a notation as XI ~,~X~ is preferred. Note that an s)J~-trivial 
object of ~2)2, if it exists, can be regarded as an orthogonal ~9~-sum of the 
empty family of objects of ~2~. A morphism f: X ~ Y is called an ~)YU 
embedding if there exists a morphism g: Z ~ Y such that the diagram X 

Y ~- Z is an orthogonal ]~-sum diagram. Given objects X and Y of s21~, 
if there exists an s2R-embedding f: X ~ Y in s))~, then we say that X is an 
sJ2i~-subobject of Y. 

Given an orthogonal category ,~, a manual in ,~: or a ,~-manual for 
short is a small subcategory of ~' abiding by the following conditions: 

(2.20) For any pair (X, Y) of objects in 932, there exists at most a sole 
morphism from X to Y in sy)~. 

(2.21) There exists at least a trivial object of ,~ in ~ .  
(2.22) Every trivial object of ~' in s212 is s)J~-trivial. 
(2.23) For any objects X, Y in s392, if there exists a morphism from X 

to Y in ~)Y~, then Y ,l,~ Z implies X ,l,,~ Z for any object Z in ~ .  
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(2.24) 

(2.25) 

(2.26) 

(2.27) 

For any objects X, Y in s)j~ with X •  Y, there exists an object 
Z of the form Z = X G,~Y in ,~'. 
For any object Z of the form Z = X q),jjr Y in s))2, X •  W 
and Y •  W imply Z • W for any object W in s392. 
For any objects X and Y in ~Y)2, X =,jje Y iff there exists an 
object Z in s2R such that X • Z, Y •162 Z, and both of X G ~  
Z and Y q)~ Z are ~-maximal .  
For any commutative diagram 

X f )Y 

, \  A 
Z 

of ,~, if f is in sjy~ and h is an ~Y)2-embedding, then g is in 992. 

A ~'-manual ~ is said to be rich if it satisfies the following condition: 

(2.28) For any object X in ~ and any embedding f: Y ~ X in ,~, 
there exists an ~ -embedd ing  f': Y' ---) X in ~ such that f and 
f' are equivalent in ,~ff. 

The reader should check that our previous notion of a manual of Boolean 
locales is no other than that of a manual in the orthogonal category 
(~2oc ,  ca,~o,.). 

As promised, we are now ready to show that the missing condition (3.10) 
of Nishimura (1993b) is retrievable within our general context concerning a 
manual ~532 in an orthogonal category ,~ as follows: 

Proposition 2.9. For any object X in ~J)~, if X • X, then X is trivial. 

Proof This follows from (2.17) and (2.20). �9 

Proposition 2.10. For any finite family {Xx}x~A of pairwise ~2-orthogo- 
hal objects in ~)2, ~X~A O~e Xx exists. 

Proof If A is empty, then the desired result follows from (2.21) and 
(2.22). If A consists of a single element, then the proposition is trivial. If A 
consists of two elements, then the desired result follows directly from (2.24). 
The general statement can be proved by induction on the number of elements 
in A by using (2.14). �9 

A manual s))~ in an orthogonal category ,~ is called tr-coherent or com- 
pletely coherent if it satisfies the following condition (2.29)~ or (2.29)~, 
respectively: 
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(2.29)`" For any sequence {Xi}iE N of pairwise ~-orthogonal objects 
in ~2)2, there exists an object Z in ~2~ such that Z = ~i~N G~j~ Xi. 

(2.29)o~ For any infinite family {Xx}x~A of pairwise ~Y)~-orthogonal 
objects in ~ ,  there exists an object Z in ~ with Z = EX~A 
O ~  X~. 

The discussion from Proposition 3.11 through Theorem 3.17 in Nishi- 
mura (1993b) still hold within our more general context of a manual ~)2 in 
an orthogonal category ,~'. Thus the manual ~2~ has the associated orthomodu- 
lar poset ~(s))~) = (L~, <--~, ~ ,  0,~, 1~3, where: 

(2.30) L~)~ = { [X]~j~IX is an object of ~)Y~}. 
(2.31) [X]~r -<~)~ [Ybt iff there exists an object Z in ~2~ such that X 

• Z and X O~  Z =~)~ Y. 
(2.32) -]~[X],)j~ = [Y]~ for an object Y in ~ such that X s Y and 

X @,e Y is ~3)~-maximal. 
(2.33) 0,)~ = [X],~ for a trivial object in ~J)~. 
(2.34) 1,~ = [X],~ for an ~J)~-maximal object in s33~. 

Proposition 3.19 of Nishimura (1993b) also remains sound in our present 
context of a manual ~ in an orthogonal category ,~. 

Proposition 2.11. For any isomorphism f: X -+ Y of ~ lying in sJ)2, its 
inverse f-1 belongs to 3)2 iff f is an 3~-embedding. 

Now we are in a position to discuss morphisms of manuals in (possibly 
distinct) orthogonal categories. A morphism from a manual s)32 in an orthogo- 
nal category ,~ to a manual ~ in an orthogonal category 52 is a functor 
from the category ~J)2 to the category ~ satisfying the following conditions: 

(2.35) If X is trivial, then ~(X) is trivial. 
(2.36) If X is ~))2-maximal, then ~(X) is ~-maximal. 
(2.37) If X s  Y, then ~(X) • ~(Y) and ~(X @,)~ Y) -- ~(X) 

E3,)~ ~(Y). 

The morphism ~ is called ~r-orthocomplete (orthocomplete, resp.) if it 
satisfies the following condition (2.38),, [(2.38)~, resp.]: 

(2.37)`" If Y = ~i~N ~ Xi with {Xi}i~N a sequence of pairwise s))2- 
orthogonal objects in ~232, then ~(Y) = ~i~N @~)~ ~(Xi).  

(2.37)~ IfY = ~X~A ~ Xx with {Xx}x~A an infinite family ofpairwise 
~-orthogonal objects in ~ ,  then ~(Y) = EX~A ~ t  ~(Xx). 

A morphism ~: ~)32 ~ ~ of manuals is said to be faithful if for any 
objects X, Y in ~32, ~(X) • ~(Y) implies X •  Y. 

Proposition 3.20 of Nishimura (1993b) remains valid. 
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Proposition 2.12. If ~: ~ ~ ~ is a morphism of manuals, then X -----,jj~ 
Y implies ~(X) ---,j~ ~(Y) for any objects X, Y in ~ .  

By this proposition we can see easily that a morphism of manuals 
naturally induces a homomorphism of their associated orthomodular posets. 
In particular, if two manuals are isomorphic, their associated orthomodular 
posets are isomorphic. 

Let B be a complete Boolean algebra, which shall be fixed throughout 
the rest of  this section. Recall that a sheaf on B is a contravariant functor 
from the category B to the category @rtd satisfying a certain mild condition. 
Since a contravariant functor from the category B to the category ~lt,3 is no 
other than a (covariant) functor from the category B to the category ~52oc, 
it is easy to see the following: 

Proposition 2.13. A functor ~ from the orthogonal category (B, o~B) 
to the orthogonal category (~%52oc, r  is a sheaf iff it preserves orthogonal 
sum diagrams. 

This proposition is suggestive of a generalization of the notion of a 
sheaf on B. Given an orthogonal category ~ ,  a ,~-presheafon B is a functor 

from the category B to the category ~ .  A ,~ff-presheaf ~ is called a ,q- 
sheaf if it maps orthogonal sum diagrams in B to orthogonal sum diagrams 
in ,~'. A morphism of ,9~-presheaves from a ,~-presheaf ~ to a ~-presheaf  ~3 
is a natural transformation "q from the functor ~ to the functor ~3. If ,~- 
presheaves ~ and c5 happen to be ,if-sheaves, then a morphism of ,ff-pre- 
sheaves from ~ to ~3 is also called a morphism of,fff-sheaves from U~ to cg. 
Note that although the notion of an @52or on B and that of a sheaf on 
B in the previous section are essentially the same, the notion of a morphism 
of @Eoc-sheaves on B is dual to that of a morphism of sheaves on B defined 
in the previous section. We denote by ShB(,~') the category of ~-sheaves on 
B and their morphisms. 

3. REVISITING BOOLEAN MATHEMATICS 

The main concern of this section is to give a view of a Boolean- 
valued Hilbert space in terms of g)52oc-sheaves on complete Boolean algebras. 
Suppose that we are given a complete Boolean algebra B with a strictly 
positive and almost finite measure tx on it. These entities shall be fixed 
throughout this section. Recall that a measure on B means a countably additive 
nonnegative function v on B with v(0) --- 0 and possibly taking the positive 
infinite + ~  as a value. It is called strictly positive if v(x) = 0 implies x = 
0 for any x E B. It is called almost finite if sup{x ~ BIv(x) is finite} = 1. 
Note that the strict positivity and the almost-finiteness of  Ix imply its complete 
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additivity, for which the reader is referred to Tomita (1952, Lemma 5.2). 
Therefore our assumption of the existence of a strictly positive and almost- 
finite measure IX on B is tantamount to assuming that the Stonean space f~ 
of B is hyper-Stonean in the sense of Takesaki (1979, Definition 1.14 of 
Chapter III). By way of example, the projection lattice of an Abelian von 
Neumann algebra always satisfies this condition, for which the reader is 
referred to Takesaki (1979, Theorem 1.18 of Chapter III). 

The aim of this section is to show that the Hilbert spaces in V cB) and 
the �9162 on B are substantially the same thing from different view- 
points. Let H be a Hilbert space in V (m. Now we are going to build its 
associated ~52or ~t4 on B. The measure tx induces a measure Ixp on 
the relative subalgebra B Ip for each p E B. The measure Ix induces a Borel 
measure g on the Stonean space ~ of B, and the measure Ixp induces a Borel 
measure Ix---p on the Stonean space l)p of B Lp for each p e B. Note that a 
Borel subset of ~p is meager iff the measure &---p vanishes on it. As we have 
shown in Section 1, the Hilbert space H in V (n) has its associated sheaf/2/ 
on B. We define 

~H(p) = {x E l:l(p)lf (x, x)'~ d-~p < +~} (3.1) 

for each p ~ B, where the inner product ( . ,  �9 ) of H in V (B) induces a 
morphism of sheaves ( ' ,  . ) ^ : / : / •  ~%. It is not difficult to see that 
~ . ( p )  is a Hilbert space with respect to the following inner product: 

(x, y) = f (x, y)p d~p for x, y ~ ~H(P) (3.2) 

It is easy to see that for any p, q ~ B with p --< q, the assignment x E ~ , ( q )  
I?tp,q(X) is a contractive linear mapping from the Hilbert space ~/4(q) to 

the Hilbert space ~H(P), whos.e dual is taken to be the value of the unique 
arrow p ---> q in the category B under ~n.  Thus we have a functor ~H: B 
~)2oc. It is not difficult to see the following. 

Proposition 3.1. ~t4 is an ~ o c - s h e a f  on B. 

Given a morphism f: X -9 Y of ~ o c  in V ~B), the dual ~(f ) :  ~ (Y )  --~ 
~ (X)  of  f is a contractive linear mapping of Hilbert spaces in V (B). Let ~x  
= ~ ( x )  and ~ v  = ~e(v). It is not difficult to see that its associated morphism 
of sheaves ~(f)^: ~(Y)^ ~ ~(X)  ̂  naturally induces a contractive linear 
mapping of  Hilbert spaces ~:  ~v(P)  ~ U~x(p) for each p e B. The assignment 
to each p ~ B of the dual of ~P, denoted by rf, is a morphism of  ~52or 
sheaves on B from ~x  to ~v. 

Conversely, given an ~52t~c-sheaf ~ on B, we are going to construct its 
associated Hilbert space H~ in V ~B). Since the category g)52o c is a subcategory 
of the category ~b52oc, ~ can be regarded as an ,~b52oc-presheaf, so that 
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the construction of Section 1 breeds an Abelian group ~ in V (e). The linear 
structures on the U~(p) naturally yield a morphism of presheaves ~: ~ o  •  

~ ~ ,  which makes ~ a module over ( ~ o ) -  through ~ in V (m. Note that 
the metric completion of (~t~ - in V (m is the set Re of real numbers in V (m. 

Let p ~ B and x, y e UC(p). Since the functor ~:  B ~ ~)~oc preserves 
orthogonal sum diagrams, the assignment q ~ B Ip ~ (~q,p(x), ~q,e(Y)) is 
a completely additive function, so that by a variant of the so-called Radon- 
Nikodym theorem (Tomita, 1952, Theorem 4) there exists an almost unique 
Borel function "qp(x, y) on l~e such that 

(~q,p(x), ~q,p(y)) = f (~'~B)q,p('lqp(X, y)) d~q (3.3) 

for every q ~ B Ip. It is easy to see that the assignmentp ~ B ~ "qp, denoted 
by "q, is a morphism of sheaves from ~ •  ~ to fits, so that fi is a real- 
valued function on ~ x ~ in V (e). It is easy to see that ~ is a separately- 
additive and positive-definite binary function on ~ in V (m, naturally bringing 
forth a metric on ~ in V (e). The metric completion of ~ in V Ce) is denoted 
by H~. The module structure of ~ over (fit~ - in V (m naturally induces a 
module structure of H~ over Re in V ~e~. 

By tidying up the preceding discussions, we have the following result. 

Proposition 3.2. H~ is a Hilbert space in V ~m. 

Let r: U~ --~ ~ be a morphism of Y)52oc-sheaves on B. Let X~ = H~ 
and X~ = H~. We denote by ~('r) the assignment p ~ B ~ ~('rp). Since 
~( 'r)-:  ~ ---) ~ is a contractive mapping in V (m, it has a unique continuous 
extension to a function T, from X~ to X~, which is a contractive linear 
mapping. The dual of T, in V Ce) is denoted by f~. 

We denote by g)~,or ~e~ the category of all objects and all morphisms of 
~,~oc in V ~m. We denote by �9 the functor from �9 ~m to ShB(g)J2oc) 
consisting of the assignments X ~ ~x  and f ~ % We denote by �9 the 
functor from ShB(~Eoc) to g)52oc CB) consisting of the assignments ~ ~ X~ 
and ~- ~ f~. 

It is easy, though somewhat tedious, to see the following result. 

Theorem 3.3. The functor �9 o ~ is naturally isomorphic to the identity 
functor of g)~2or (e~. 

By using the techniques of Ozawa (1983, 1984, 1985), it is also easy, 
though a bit more difficult than in the preceding theorem, to see the follow- 
ing result. 

Theorem 3.4. The functor qb o ~ is naturally isomorphic to the identity 
functor of ShB(~)EOC). 
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By combining Theorems 3.4 and 3.5, we have the following. 

Theorem 3.5. The categories ~ 2 o c  (B) and ShB(g)~oc) are equivalent.  

NOTE ADDED IN PROOF 

Example 2.4 turned out to be inappropriate.  
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